Saturday, July 28, 2012
Sunday, July 22, 2012
Friday, July 20, 2012
Saturday, July 14, 2012
Amul Pays Tribute To Dara Singh
Amul has paid a tribute to late wrestler-actor Dara Singh, who passed away on Thursday (July 12, 2012) after prolonged illness. Winner of titles such as Rustum-e-Punjab and Rustum-e-Hind for his wrestling prowess, Dara Singh will always be remembered as Hanuman from the popular television series Ramayan.
Agni I India's indigenously built Nuclear Missile
#1 The missile can strike a target 700 km away and can carry a one tonne nuclear warhead.
#2 Agni-I has a specialised navigation system, Ring Laser Gyro- INS, which ensures it reaches the target with a high degree of accuracy.
#3 Weighing 12 tonnes, the 15-metre-long Agni-I, which can carry payloads up to 1000 kg, has already been inducted into the Army.
#4 Agni-I missile was tested by the armed forces from a facility on Wheeler Island near Dhamra in Bhadrak district, 170 km from Bhubaneswar.
#5 The missile was launched from Road Mobile Launcher System and was tracked by Radar and Telemetry stations located along the coastline.
#6 Two Naval Ships located near the target point tracked the missile in the terminal phase of the Flight.
#7 Indigenously developed by the DRDO, the missile is already in the arsenal of Indian Armed Forces and was launched by the Strategic Forces Command as part of training exercise to ensure preparedness.
#8 The last trial of the Agni-I missile was successfully carried out on December 1, 2011 from the same base.
#9 It is meant to bridge the gap between indigenously built short-range missile Prithvi and Agni II that has a range of 2000 km.
#10 The test of Agni-I comes after the successful launch of 5,000-km range Agni-V on April 19.
#2 Agni-I has a specialised navigation system, Ring Laser Gyro- INS, which ensures it reaches the target with a high degree of accuracy.
#3 Weighing 12 tonnes, the 15-metre-long Agni-I, which can carry payloads up to 1000 kg, has already been inducted into the Army.
#4 Agni-I missile was tested by the armed forces from a facility on Wheeler Island near Dhamra in Bhadrak district, 170 km from Bhubaneswar.
#5 The missile was launched from Road Mobile Launcher System and was tracked by Radar and Telemetry stations located along the coastline.
#6 Two Naval Ships located near the target point tracked the missile in the terminal phase of the Flight.
#7 Indigenously developed by the DRDO, the missile is already in the arsenal of Indian Armed Forces and was launched by the Strategic Forces Command as part of training exercise to ensure preparedness.
#8 The last trial of the Agni-I missile was successfully carried out on December 1, 2011 from the same base.
#9 It is meant to bridge the gap between indigenously built short-range missile Prithvi and Agni II that has a range of 2000 km.
#10 The test of Agni-I comes after the successful launch of 5,000-km range Agni-V on April 19.
Friday, July 13, 2012
Thursday, July 12, 2012
Sunday, July 8, 2012
The Discovery Of GOD PARTICLE
In 1964, the British physicist Peter Higgs wrote a landmark paper hypothesizing why elementary particles have mass. He predicted the existence of a three-dimensional "field" that permeates space and drags on everything that trudges through it. Some particles have more trouble traversing the field than others, and this corresponds to them being heavier. If the field — later dubbed the Higgs field — really exists, then Higgs said it must have a particle associated with it: the Higgs boson.
Fast forward 48 years: On Wednesday (July 4), physicists at the Large Hadron Collider (LHC), the world's largest atom smasher in Geneva, Switzerland, announced they had discovered a Higgs-like particle at long last. If the new particle turns out to be the Higgs, it will confirm nearly five decades ofparticle physics theory, which incorporated the Higgs boson into the family of known particles and equations that describe them known as the Standard Model.
The search for the Higgs gained a level of public attention unusual for physics partly thanks to the physicist Leon Lederman's 1993 book "The God Particle" (Dell Publishing). Lederman gave the Higgs its godly nickname because the particle is "so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive," he wrote in the book. However, he quipped that the second reason was that "the publisher wouldn't let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing."
Indeed, the Higgs boson eluded detection through the construction and shutdown of two expensive high-energy particle colliders built partially for the purpose of detecting it. In these colliders, particles are accelerated through a tunnel and then smashed together, producing an excess of energy that sometimes takes the form of new and exotic particles. Only the Large Hadron Collider at CERN Laboratory, the most powerful particle collider ever built, turned out to probe energies high enough to generate a Higgs particle, which is roughly 125 times the mass of a proton.
But what does the Higgs particle actually do? How does it, and the Higgs field associated with it, give things mass?
In physics, when particles interact with fields, the interaction must be mediated by a particle. Interactions with the electromagnetic (EM) field, for example, are mediated by photons, or particles of light. When a negatively charged electron is pulled by the EM field toward a positively charged proton, the electron experiences the EM field by absorbing and emitting a constant stream of "virtual photons" — photons that momentarily pop in and out of existence just for the purpose of mediating the particle-field interaction. Furthermore, when the EM field is "excited," meaning its energy is flared up in a certain spot, that flare-up is, itself, a photon — a real one in that case.
Along the same lines, the Higgs particle mediates interactions with the Higgs field, and is itself an excitation of the Higgs field. Particles are thought to trudge through the Higgs field (thereby acquiring mass) by exchanging virtual Higgs particles with it. And, the thinking goes, a real Higgs particle surfaces when the field becomes excited, flaring up with energy in a certain spot. Detecting such a flare-up (i.e. the particle) is how physicists can be sure the field itself exists. At the LHC, they managed to bash atoms together hard enough to generate, for a fleeting instant, a 125 giga-electron-volt excitation of what was likely the Higgs field. The flare-up had all the trappings of a Higgs boson.
From LiveScience
Saturday, July 7, 2012
Thursday, July 5, 2012
Subscribe to:
Posts (Atom)